Moment functions of higher rank on polynomial hypergroups

نویسندگان

چکیده

In this paper we consider generalized moment functions of higher order. These are closely related to the well-known binomial type which have been investigated on various abstract structures. our former properties order commutative groups. particular, proved characterization a group as product an exponential and composition multivariate Bell polynomial sequence additive functions. present continue study function sequences in more setting, namely defined hypergroup. We characterize these hypergroup one variable by means partial derivatives polynomials generating analytic function. As example, give explicit formula for rank at most two Tchebyshev

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

Higher rank Einstein solvmanifolds

In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

متن کامل

HOMOMORPHISMS OF l-ALGEBRAS ON SIGNED POLYNOMIAL HYPERGROUPS

Let {Rn} and {Pn} be two polynomial systems which induce signed polynomial hypergroup structures on N0. We investigate when the Banach algebra l(N0, h) can be continuously embedded into or is isomorphic to l(N0, h ). We find sufficient conditions on the connection coefficients cnk given by Rn = ∑n k=0 cnkPk, for the existence of such an embedding or isomorphism. Finally we apply these results t...

متن کامل

Point Derivations on the l-Algebra of Polynomial Hypergroups

Polynomial hypergroups are a very interesting class of hypergroups with a great variety of examples which are quite different from groups. So the L-algebras of hypergroups have properties very distinguished to the L-algebras of groups, in particular in the context of amenability and related conditions. Being amenable the L-algebra of an abelian group does not possess any non-zero bounded point ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in operator theory

سال: 2022

ISSN: ['2538-225X', '2662-2009']

DOI: https://doi.org/10.1007/s43036-022-00204-2